$$
\begin{aligned}
& \frac{+3 C)+6 B}{10}=\frac{4 M+6 B}{10} \Rightarrow Z \in[M B]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\vec{D}}{0} \approx \overrightarrow{C L}=\alpha \vec{A} \quad P=\frac{(2 A+3 B)+8 C}{13}=\frac{5 D+B C}{13} \Rightarrow P \in[C D]
\end{aligned}
$$

Selecting the RUN 登㘳－ perform general computations and arithmetic．

The function keys allow you to access the tab（soft key）menus that will come up at the bottom of the screen．When an \square appears above the $F 6$ key，selecting F6 will offer more on－screen choices．

The IUENO key displays every mode the calculator has． To select a mode，you may © © to the desired icon and press E XE or press the number or letter in the lower right hand corner of the icon．

The EXIT key operates like the back arrow on a web browser；it will take you back one screen each time you select it．The EXIT key will not take you to the icon menu．

The［－TD key is a toggle key that will change answers or entered numbers back and forth from decimal to fraction／root form．

The actor key will power the unit on．To turn the unit off，press the yellow shit key，then achoo key．

The 图 key is used to obtain a fraction bar．To obtain a mixed number，press 圈 after inputting the whole number．

The Ext key executes operations．When data is entered，the Ex button must be pressed to store the data．

CASIO．

The following explains the meaning of each icon on the fx-9860GII icon menu

ICON	Menu Name	Description
$\begin{aligned} & \text { EUY } \\ & +\underset{+1}{+1} \\ & \hline \end{aligned}$	RUN	This icon menu is used for general computations, including absolute value, logs of any base, summation, derivatives, and integrals.
	STATISTICS	This icon menu is used to perform single-variable (standard deviation) and paired variable (regression) statistical calculations, to perform tests, to analyze data and to draw statistical graphs.
	eACTIVITY	eActivity allows for the input of text, math expressions, and other data in a notebooklike interface. Use this mode when you want to store text, formulas, or built-in application data in a file
$\begin{gathered} 5 \mathrm{sit} \\ \mathrm{EHat} \\ \hline \end{gathered}$	SPREADSHEET	This icon menu is used for creating spreadsheets.
$\begin{aligned} & \text { GRFH } \\ & B H G \end{aligned}$	GRAPH	This icon menu is used to quickly draw, store and calculate information of functions. Can graph polar, parametric, $x=$, and inequality graphs on the same screen.
	DYNAMIC GRAPH	This icon menu is used to draw multiple versions of a graph by changing certain values in the function.
	TABLE	This icon menu is used to store functions, to generate a numeric table of different solutions as the values assigned to variables in a function change, and to draw graphs.
$\begin{gathered} \text { FECUF: } \\ \text { ANA } \end{gathered}$	RECURSION	This icon menu is used to store recursion formulas, to generate a numeric table of different solutions as the values assigned to the variables in a function change, and to draw graphs
$\begin{aligned} & \text { concs } \\ & +2 \end{aligned}$	CONICS	This icon menu is used to graph parabolas, circles, ellipses, and hyperbolas. You can input a rectangular or polar coordinate function or a parametric function for graphing.
	EQUATION	This icon menu is used to solve linear equations with two through six unknowns, and high-order equations from $2^{\text {nd }}$ to $6^{\text {th }}$ degree.
	PROGRAM	This icon menu is used to store programs in the program area and to run programs.
	TIME VALUE OF MONEY	This icon menu is used to preform financial calculations and to create cash flow and other types of graphs.
$\begin{array}{r} \mathrm{E}-\mathrm{COHE} \\ \sqrt{3} \mathrm{BO} \mid \mathrm{E} \\ \hline \end{array}$	DATA ANALYZER LINK	This icon menu is used to control the optionally available EA-200 Data Analyzer. For information about this icon menu, download the E-CON2 manual from http://edu.casio.com.
$\begin{aligned} & \text { LITHE } \\ & \text { 国鳴 } \end{aligned}$	LINK	This icon menu is used to transfer memory contents or back-up data to another unit or PC.
	MEMORY	This icon menu is used to manage data stored in memory.
YSTEV1	SYSTEM	This icon menu is used to initialize memory, adjust contrast, reset memory, and to manage other system settings.
GEOM	GEOMETRY	This mode allows you to draw, analyze and animate geometric objects.

7. To calculate $(-3+2 i)+15 i$; enter the following:

- OPTN F3 cos $\rightarrow 3 \rightarrow 2$ F1 tan $\square 155$ F1 EXE

Sigma calculations can also be performed in the RUN menu.
8. To calculate $\sum_{k=2}^{6}\left(k^{2}-3 k+5\right)$; enter the following:

[${ }_{\text {a }}$		

GRAPH

Various icons (Run, Table, Dynamic, Recursion \& Conics) will allow you to graph or analyze the graphs of given information. This section is an overview of the GRAPH Icon and will highlight some basic features of this mode..

The initial screen allows immediate input of functions set equal to zero. You may begin inputting data into Y1: pressing EXE to store; to draw your function(s), select F6.

You can change the type of graph ($r=$ polar coordinates, parametric functions, $x=$, and inequalities) by selecting the corresponding TYPE button and then press \mathbb{D} to begin inputting.

When the TYPE of graph is changed, it only affects the current line and entries below it. Functions already stored are unchanged.

1. To draw the graph of the function $y=2 x^{2}-5 x-3$ from the Icon Menu system, input the following:

To quickly change your window, you can utilize the Replay arrows. Specific changes can be made to the viewing window by selecting V-Win F3.

To analyze features of this graph (roots, maximum and minimums, y-intercepts, intersections, determine coordinates, and integrals) select F5 (G-Solve).

2. F1 (Root):

Note: The left-most root will always display first. To display the next root, simply press
3. F3 (Minimum):

Note: As long as the x-value of your vertex is in the viewable domain; you do not need to see the vertex to calculate the minimum value. However, you can change the viewing window by selecting F3 (V-Window) in the graph window.
4. F4 (y-intercept):

5. F1 (y-calculation): What is the value of y when x is -5 ?

6. F2 (x-calculation): What is the values) of x when y is 1 ?

7. F3 (integral): Determine the integral value from $(0,3)$ for the function $\mathbf{Y} 1=2 x^{2}-5 x-3$.

This section is an overview of the TABLE Icon. To select this icon, you may highlight it and press Ex 日 or press 7 .

The initial screen allows immediate input of functions that are set equal to 0 . To change the type of expression to be entered, press F3 (TYPE) and select F2 ($r=$) for polar coordinates, F3] (Param) for parametric functions or F4 (CONV) to convert a previously entered function to an inequality.

1. To see a table for the function $y=\frac{2}{3} x \vdash-4$, highlight $Y 1$: and input the following:

2. The default setting for tables is: X starts at 1 , ends at 5 , and increases by increments of 1 . You change this by pressing EXIT or F1 (FORM) to return to the initial screen and then select Ff (SET).

3. However, you can enter a number anywhere in the x-column of the table and press EXE to see the corresponding y-value (including fractions, decimals, even π). You can insert and delete rows in this view by pressing F3 (ROW). This is a quick way to custom make tables.

4. From the table view screen, you can press F5 (G-CON) to see a connected plot linear graph or F6) (G-PLT) to see a plot graph for the function you entered.

5. To see a split screen of your table and graph, press \square SHIT T LENO to enter the SET UP menu for the

If you manually entered values to the previous table that you still want displayed, you can re-enter them here, then press 殹 to see the graph of that table.

To generate a differential number table, press shim Milo to enter the SET UP menu for the TABLE icon and \odot to Derivative, select (F1) (On), EXTT, and then F6.
6. For this example, enter $\mathrm{YI}: 3 x^{2}-2$ and $\mathrm{Y} 2: \mathrm{x}^{2}$ then F6 to view the differential number table.

Note: Locating the cursor at a differential coefficient displays "dy/dx" in the top line, which indicates differential.

This section is an overview of the STAT Icon; it will highlight just a few of the features for single-variable data and paired-variable data. To select this icon, you may highlight it and

The initial screen is the List Editor Screen that allows input of statistical data and performs numerous statistical calculations. To input a list of single-variable data, highlight the first cell under List 1 and enter each number followed by ㅌㅈ․

1. For this example, input this set of data:

List 1	1	0.5	1.2	4	-1	1	3	5	6	3.4

2. From this screen you can display various statistical graphs depending on whether you have single or paired-variable data (scatter-plot, line, normal probability, histogram, median box, mean box, normal distribution, broken line, and regression: linear, quadratic, cubic, quartic, logarithmic, exponential, power, sinusoidal and logistic).

STATISTICS

7. For paired variable data, use the following:

List 1	0.5	1.2	2.4	4	5.2
List 2	-2.1	0.3	1.5	2	2.5

Enter List 1 first, and then \oplus to begin entering List 2. The cursor will automatically move to the beginning of the next list.

8. To see a scatter-plot of these data, you can go through and change GPH 1 back, using the process above, or select F2 (GPH 2) from the List Editor screen whose default is also a scatter-plot.

9. From the scatter-plot screen, pressing F1 will show all the calculations that can be obtained from this set of data.

10. To calculate a linear regression for these data, select F2 from the first set of options and then press F1 or F2 for the preferred form. For this example, we will use $y=a x+b$.

11. From this screen, select ${ }^{\text {F5 }}$ (COPY) to copy and then paste the regression equation into the initial Graph screen or select F6 (DRAW) to show the linear regression.

Press EXIT to return to the previous screen, press (F1 (REPT) to edit this problem or continue solving simultaneous equations with three unknowns. To edit just one of the numbers in the system, arrow to the number to be edited and press (F4 (EDIT) or highlight the number to be

Press EXTT until the Equation Editor screen is displayed. The second mode is F2 Polynomial and can be used to solve second to sixth degree polynomial equations (in standard form).
2. To solve the equation $x^{3}-2 x^{2}-x+2=0$, input the following:

3. To change the equation to $x^{3}+2 x^{2}+3 x+2=0$, select (F1 (REPT) and change the b - value to 2 , the c -value to 3 and press (F1) (SOLV).

4. The default setting is for real numbers; to change the display to a+bi form, press for the Polynomial SET UP menu, select F2 (a+bi), EXTT, then F1 (SOLV).

This section is an overview of the CONICS Icon. To select this icon, you may highlight it and press E XE or press 9 .

The initial CONICS screen allows you to choose from various conic functions, including rectangular, polar or parametric form. You may use the \otimes to select the equation of the function in accordance with the type of graph you want to draw. Once you have chosen the conic function you would like to graph, enter the coefficients of the function and then press DRAW F6.

1. To view the graph of the conic: $y=2 x^{2}-5 x-3$, select the $y=A X^{2}+B X+C$ form from the Conics formula menu.

In the Conics modes, when you press F5 (G-Solv), although you are still graphing a parabola like in the graphing section, notice how the vocabulary and options have changed to be conic specific.

2. For example, you can now examine the line of symmetry for this parabola as the equation of that line will be displayed.

You can continue to analyze different areas of this graph and the line of symmetry will still be displayed.

$\square \Delta \square \square$

http://edu.casio.com/

Worldwide education website for teachers and students

