DISTRIBUCIÓN

La **fx-991LA X** puede generar rápidamente tablas de distribución de probabilidad; con distribuciones normales, normales inversas, binomiales y de Poisson.

Desde el menú principal, use las teclas de flecha para resaltar el icono Distribución y, a continuación, presione 😑 o bien 🔽.

Aparecerán varias opciones de distribución. Use 🕤 para acceder a la segunda página.

1	:DP	Norm	nal
2	:DA	Norn	nal
3	:Noi	rmal	Inversa
4	:DP	Bind	omial

Seleccione (1) (DA Binomial) de la segunda página para analizar el siguiente problema de distribución binomial: "Se realizan seis tiradas con un dado de 6 caras. Halle P(el número 6 sale al menos dos veces)."

Para introducir los valores de *x* (número de éxitos), *N* (número de intentos) y *p* (probabilidad de éxito), presione **2** (Variable). Introduzca los valores como se muestra, usando **=** para crear el separador fraccional.

Tras presionar 😑 para introducir el valor de *p*, ClassWiz convierte automáticamente la fracción en un decimal para sus propios fines.

Presione 😑 de nuevo para calcular la probabilidad.

1:DA Binomial 2:DP Poisson 3:DA Poisson

1:Lista 2:Variable

DA X	Binomial :1 :6	
p	:1_6	

DA	Binomial
X	:1
Ν	:6
\mathbf{p}	:0,1666

DISTRIBUCIÓN

Se mostrará una probabilidad del 73,7 %.

Al introducir x = 1, la calculadora calculó P(≤ 1 seis obtenido). Esto presenta una gran oportunidad para usar el **complemento** de un evento: P = 1 - 0,737 = 0,263 = 26,3 %.

Para mostrar las probabilidades de obtener *cualquier* número de seises en 6 tiradas, presione **(PTN) 1** (Seleccion tipo).

Esta vez, elija (DP Binomial).

Puesto que el cálculo es para probabilidades con diferente número de éxitos, seleccione 1 (Lista).

Introduzca los valores 0, 1, 2, 3, 4, 5, y 6 en la columna "x" (que representa el número de éxitos). Presione 🔳 después de cada valor introducido.

Una vez introducido el último valor, presione 😑 de nuevo para finalizar el proceso de introducción de datos.

Observe cómo los valores N y p quedan al margen del cálculo de probabilidad acumulada. (N y p son variables globales de la calculadora.)

DISTRIBUCIÓN

Presione 😑 una vez más para calcular la tabla de distribución de probabilidades.

Observe cómo las probabilidades pequeñas se expresan en una conveniente notación científica.

NORMAL INVERSA

Para calcular una distribución normal inversa, presione **OPTN 1** (Seleccion tipo).

("Editor" permite editar la lista de datos de PD previa.)

Seleccione 3 (Normal Inversa).

Introduzca los valores como se muestra para responder a la siguiente pregunta: "Si la altura de los hombres estadounidenses se distribuye normalmente con una media de 70 pulgadas y una desviación estándar de 4 pulgadas, ¿qué rango define el 10 % de hombres estadounidenses más altos?"

Presione 🖃 una vez más para mostrar el resultado. Para estar entre el 10 % de hombres estadounidenses más altos, un hombre debe medir más de 75 pulgadas (6'3").

1:Seleccion tipo 2:Editor

1:DP Normal 2:DA Normal 3:Normal Inversa 4:DP Binomial

xInv= 75,12620655